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Using Andreev and Lifshitz’s supersolid hydrodynamics, we obtain the propagating longitudinal modes at
nonzero applied pressure Pa �necessary for solid 4He�, and their generation efficiencies by heaters and trans-
ducers. For small Pa, a solid develops an internal pressure P� Pa

2. This theory has stress contributions both
from the lattice and an internal pressure P. Because both types of stress are included, the normal-mode analysis
differs from previous works. Not surprisingly, transducers are significantly more efficient at producing elastic
waves and heaters are significantly more efficient at producing fourth sound waves. We take the system to be
isotropic, which should apply to systems that are glassy or consist of many crystallites; the results should also
apply, at least qualitatively, to single-crystal hcp 4He.
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I. INTRODUCTION

In 1969, Andreev and Lifshitz developed a theory of
supersolids.1 Although the microscopic physical description
was for flow of vacancies, the macroscopic equations did not
depend on vacancies in an essential fashion. At about the
same time Thouless2 and Chester3 both suggested the possi-
bility of superflow in a solid by vacancies. In addition,
Leggett4 pointed out the possibility of nonclassical rotational
inertia �NCRI� associated with quantum-mechanical flow via
a superfluid velocity �a phase gradient� opposite the local
velocity of the rotating lattice.

Since the observation of NCRI by Kim and Chan,5,6 a
number of laboratories have reproduced their work.7–14 �For
reviews that emphasize experiment, see Refs. 15 and 16.�
Were NCRI the sole criterion for superflow of solids, there
would be strong reason to accept that such superflow has
been observed. However, a supersolid should also have other
properties, including a fourth soundlike mode, as predicted
by Andreev and Lifshitz, and modified elastic waves with
higher velocities, since the superfluid mass does not partici-
pate in the motion. �We remind the reader that a fourth sound
mode in superfluid 4He occurs only when the normal fluid is
entrained by a porous medium; in the present case the lattice
serves as the porous medium.� Neither a fourth sound mode
nor velocity shifts have been observed.17–19 However, a stiff-
ened shear response is observed,20,21 although not enough to
explain the observed NCRI.16 Note also recent work indicat-
ing that supersolidity in 4He can only occur below 55 mK.22

As a guide to experiments to observe the fourth sound
mode,19 the present work calculates various quantities rel-
evant to its observation, such as the relative efficiencies of a
transducer and a heater in producing both longitudinal elastic
waves and fourth sound waves. It also considers the effect of
a nonzero applied pressure Pa; to solidify 4He, even near T
=0, requires Pa�25 bars. To our knowledge, previous
works have not included the effect of Pa.

Although we believe that vacancies are essential to a mi-
croscopic understanding of superflow in solids, in the hydro-
dynamic theory they play no fundamental role, other than as
an additional variable largely tied to diffusion. Indeed, we
believe that the hydrodynamic theory is more likely to de-

scribe a supersolid related to the NCRI effect proposed by
Leggett than to vacancy superflow.

Most of the present work assumes that the system is iso-
tropic. One effect this has is that the superfluid density,
which properly is a second-rank tensor �sJ , is proportional to

the unit matrix so we take �sJ �1J�s.
23,24 We then write the

superfluid fraction as

fs =
�s

�
, �1�

where �s is the superfluid density and � is the total �mass�
density. fs is unity in a superfluid at low temperatures. How-
ever, in putative supersolid 4He, the measured NCRI frac-
tion, which if due to superflow should be equated to fs, is
never greater than about 0.2. The effective normal fraction fn
thus has the curious property of being not less than 0.8,
although at T=0 there are no excitations to destroy the su-
perflow. We have previously noted this difficulty,25 and pro-
posed that the lattice be given a mass fraction fL, in addition
to a contribution fn

ex due to excitations, so that 1= fs+ fn
ex

+ fL. This permits, at T=0, no excitations �so fn
ex=0� but fs

�1. In this viewpoint, the lattice velocity is identified with
u̇i, where ui is the lattice displacement, and the effective
normal fluid fraction fn is the sum of fL and a part fn

ex due to
excitations: fn= fn

ex+ fL.
It is known that the more annealed �and thus more crys-

talline� the sample of 4He, the smaller the NCRI fraction.11

Likewise it is known that the more quenched the sample, the
larger the NCRI fraction.12 Hence the supersolidity is more
likely to occur for less crystalline samples, which might be
either glassy26 or consist of a large number of small
crystallites.27 In both of these cases, an acoustic probe is
likely to take a rotational average, thus making the system
behave more like an isotropic system than a crystal. There-
fore, we consider systems whose macroscopic properties are
isotropic. If a pure crystal of hcp 4He were to be supersolid,
then the results we obtain would be only an approximation;
nevertheless they would be a useful guide for experiment.

We also note that we are working in the linear regime,
where the disturbances produced by a heater or transducer
are expected to be only a small perturbation, as is assumed in
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all theories of this sort. It is possible that solid 4He is ultra-
sensitive to temperature or to stress �e.g., if it is a glass,
perhaps the atoms can be driven off their sites by a trans-
ducer�. Nevertheless, there should always be a linear regime;
Ref. 19 notes that their membrane for producing putative
fourth sound produced strains much below the critical value.

The present work is intended to be self-contained, al-
though we neither derive the equations of motion, which
may be most explicitly obtained from Sec. IV of Ref. 28,29

nor do we derive the Pa dependence of various quantities,
which is done explicitly in Ref. 30.

Sections II and III present the thermodynamics and equa-
tions of motion, respectively. Section IV studies the eigen-
frequency and eigenmodes for each of the longitudinal
propagating modes. Section V finds, for each mode, the
stress and temperature response in terms of the normal fluid
velocity. Section VI finds and discusses the efficiency of gen-
erating each propagating mode by a transducer and a heater.
Section VII provides a brief summary of the results.

One of the features of the hydrodynamic theory of super-
solids is that it contains stress due to both internal pressure P
and the lattice, in order to permit the system properties to
continuously transform into those of a superfluid. This means
that under an applied pressure Pa the pressure and the lattice
each take up a part of it. We believe that use of both a
pressure and a lattice stress is needed not merely for solid
4He but for other solids as well, particularly those under
pressure or with point defects that are not in equilibrium.30

Appendix A discusses the relationship between the internal
pressure P and the applied pressure Pa, which we estimate
using experimental data and results from Ref. 30. Appendix
B discusses the relative sizes of velocities and strains in a
crystal under an applied pressure. Appendix C finds the rela-
tive size of two thermodynamic derivatives of temperature T
that appear in the generation efficiencies.

II. THERMODYNAMICS

The thermodynamic equations for a supersolid are given
in terms of the energy density �, entropy density s, unsym-
metrized strain wij =�iuj, mass density �, superfluid velocity
v�s, and momentum density

g� = �nv�n + �sv�s, �2�

and their thermodynamically conjugate quantities.1,28 Here
v�n is the normal fluid velocity. Specifically,

d� = Tds + �ikdwik + �d� + v�n · dg� + j�s · dv�s, �3�

� = − P + Ts + �ikwik + �� + v�n · g� + j�s · v�s, �4�

0 = − dP + sdT + wikd�ik + �d� + g� · dv�n + v�s · dj�s. �5�

Here the thermodynamically conjugate quantities are tem-
perature T, �unsymmetrized� elastic tensor density �ik �with
units of pressure P�, chemical potential � �with units of ve-
locity squared�, normal fluid velocity v�n, and

j�s = g� − �v�n = �s�v�s − v�n� . �6�

Note that j�s has units of momentum density but is invariant
under Galilean boosts. That is, if both v�n and v�s are boosted
by �v� , then j�s does not change.

We find it convenient to define

j�n � �v�n �7�

so that

g� = j�n + j�s. �8�

Unlike j�s, the quantity j�n is a momentum density both in
units and in its properties under Galilean boosts; under a
boost by �v� , both g� and j�n are boosted by ���v��.

III. HYDRODYNAMIC EQUATIONS

Equation �3� shows that there are five independent ther-
modynamic variables. Two of them are scalars �s and ��, one
is a tensor �wik=�iuk� and two are vectors �g� and v�s�. In
developing the hydrodynamic equations we employ the first
three but we use the two vectors j�n and j�s in place of g� and
v�s. For an ordinary solid, where v�s does not appear, it is
convenient to use the variables ��s /�, �, wik, and g� since �
decouples from the other variables. Such decoupling does
not occur for the supersolid. Note that one could also use the
scalar variables T and �, or T and �, or s and �. Unless
otherwise specified, thermodynamic derivatives with respect
to �, s, or wik are taken with the other two variables held
constant.

We consider small amplitude excitations of the form
exp�i�k� ·r�−	t��, where the wave vector k� is taken to be
known. Then, with primes denoting deviations from equilib-
rium, in the absence of damping the equations of motion are
given by1,28

�̇� + �igi� = 0, �9�

ġi� − �k�ik� = 0, �ik � �ik − P�ik, �10�

v̇si� + �i�� = 0, �11�

ṡ� + s�ivni
� = 0, �12�

u̇i� − vni
� = 0. �13�

Rather than the stress tensor �ik, the momentum flux 
ik
=−�ik+�svsivsk+�nvnivnk�−�ik has also been employed,1,31

as well as gi= ji.
1,31,32

In terms of the thermodynamic variables � and s, we have

�� =
��

��
�� +

��

�s
s� +

��

�wjl
wjl� , �14�

�ik� =
��ik

��
�� +

��ik

�s
s� +

��ik

�wjl
wjl� . �15�

The equations of motion, Eqs. �9�, �12�, and �13� directly
give
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�� =
kigi�

	
, �16�

s� = s
kivni

�

	
, �17�

wij� = ikiuj� = −
kivnj

�

	
. �18�

The other two equations of motion, Eqs. �10� and �11�, can
now be written in terms of vsi� and vni� , or, equivalently, jsi�
and jni� .

From Eqs. �15�–�18�, momentum conservation �Eq. �10��
gives

	gi� = − kk�ik�

=−
kkkl

	

��ik

��
gl� −

kkkl

	
s
��ik

�s
vnl� +

kkkj

	

��ik

�wjl
vnl� . �19�

We now rearrange to use the variables jn� and js�. From Eqs.
�7� and �8�, multiplying Eq. �19� by 	 gives

0 = �	2�il + kkkl
��ik

��
	 jsl�

+ �	2�il + 
kkkl
��ik

��
+ kkkl

s

�

��ik

�s
− kkkj

1

�

��ik

�wjl
�	 jnl� .

�20�

Likewise, from Eq. �14� and Eqs. �16�–�18�, the superfluid
equation of motion �Eq. �11�� gives

	vsi� = ki�� =
kikl

	

��

��
gl� +

kikl

	
s
��

�s
vnl� −

kikj

	

��

�wjl
vnl� .

�21�

From Eqs. �7� and �8� and �svsi� = jsi� − ��s /��jni� , multiplying
Eq. �21� by �s	 and rearranging gives

0 = �	2�il − kiklfs�
��

��
	 jsl�

+ fs�	2�il − �
kikl
��

��
+ kikl

s

�

��

�s
− kikj

1

�

��

�wjl
�	 jnl� .

�22�

Equations �20� and �22� yield the normal-mode frequen-
cies and their eigenvectors �the ratio of the responses of the
normal and superfluid currents�. In what follows we consider
only an isotropic solid. The effect this constraint has on Eqs.
�20� and �22� is that the second-rank tensors are all propor-
tional to the unit tensor, and the term kkkj�

−1���ik /�wjl� in
Eq. �20� contains two terms, one proportional to �il and one
proportional to kikl.

Taking the dot product of these equations with ki then
gives two equations in the unknowns 	2, k� · j�s�, and k� · j�n�. This
yields 	2 and the ratio k� · j�s� /k� · j�n�. In addition, taking the
cross product of Eq. �22� with ki gives, since k� �v�s=0� , iden-

tically zero. Further, taking the cross product of Eq. �20� with
ki gives an equation having terms proportional to 	2 and k2,
both multiplying k� �v�n.

There are two ways to solve the resulting equations for
k� · j�s�, k� · j�n�, and k� �v�n. One solution is to take k� �v�n=0� and
kljsl� �0, kljnl� �0 �purely longitudinal modes�, with the fre-
quencies determined by the two equations in the unknowns
	2, k� · j�s�, and k� · j�n�. Hence this set of modes is purely longi-
tudinal. The other solution is to take k� �v�n�0� and k� · j�s�=0,
k� · j�n�=0 �purely transverse modes�, with the frequencies de-
termined by the cross product of Eq. �20� with ki. v�s does not
participate in the transverse modes, so their mass weighting
involves only � /�n, and their frequencies squared should be
higher than in the normal solid by � /�n. To our knowledge,
such an effect has not been observed.33

IV. LONGITUDINAL EIGENFREQUENCIES
AND EIGENMODES

Recall that, unless otherwise specified, thermodynamic
derivatives with respect to �, s, or wik are taken with the
other two variables held constant.

A. Some properties and definitions

We now compute the quantity ��ik /��, which appears in
Eq. �20�. We take the strain response of a solid to Pa to be
isotropic �i.e., wik

�0���ikwll
�0�, where the superscript �0� de-

notes the static value�. Recall that wik is unsymmetrized; here
we take only the static part, due to Pa, to be symmetric, as
does Ref. 34. Then, by Ref. 34,

�ik
�0� = 
K −

2

3
�V��ikwll

�0� + �V�wik
�0� + wki

�0�� � �ikwll
�0�

�23�

so that we can write

��ik

��
�

��

��
�ik. �24�

Here, K and �V are the respective bulk and shear moduli,
with units of P; �V is completely distinct from �. Equation
�24� is also employed in Ref. 30, although there �=s /� is
held constant rather than s. At T�0, the difference should be
negligible. Thus we can write

��ik

��
=

��ik

��
− �ik

�P

��
= � ��

��
−

�P

��
	�ik �

��̃

��
�ik, �25�

where we use �̃ to distinguish a stress �with the same units as
�ik� from �=s /�; �̃ and � are not related. Note that ��̃ /�� is
not a true derivative, merely a definition; further, we do not
here define a �̃.

We now compute the quantity ��ik /�wjl, which also ap-
pears in Eq. �20�. Since Ref. 30 shows that ��P /�wik�
�wik

�0��wll
�0��ik, we can write

GENERATION EFFICIENCIES FOR PROPAGATING MODES… PHYSICAL REVIEW B 82, 094519 �2010�

094519-3



�P

�wik
�

�P

�w
�ik. �26�

�P /�w is evaluated in Ref. 30, and is given in Appendix B.
We also use the definitions

��

�w
� K +

4

3
�V,

��̃

�w
�

��

�w
−

�P

�w
. �27�

As above, ��̃ /�w is not a true derivative, merely a definition.
Equations �23� and �26� then give

��ik

�wjl
= 
 ��̃

�w
− 2�V��ik� jl + �V�il� jk + �V�ij�kl. �28�

Thus,

kkkj
��ik

�wjl
jnl� = 
 ��̃

�w
− �V�ki�k� · j�n�� + �Vk2jni� . �29�

For k� · j�n��0 and k� � j�n=0 �the longitudinal case�, ki�k� · j�n��
=k2jni� so that Eq. �29� gives

kkkj
��ik

�wjl
jnl� =

��̃

�w
k2�Vjni� . �30�

It is convenient to define the velocities c0 and c1, which
satisfy

c0
2 � �

��

��
, �31�

c1
2 � −

��̃

��
+

1

�

��̃

�w
. �32�

If �, rather than s, were held constant, then c0 would be the
sound velocity in an ordinary fluid, and c1 would be the
velocity of sound in an ordinary solid with no superflow.30

Using the Gibbs-Duhem relation �5� and neglecting thermal
expansion and terms second order in velocities gives

�P

��
= c0

2 + wjl
�� jl

��
. �33�

Then, Eq. �25� gives

��̃

��
� �1 − wll

�0��
��

��
− c0

2. �34�

In the following, we use either Eq. �25� or Eq. �34�, depend-
ing on convenience.

B. Reducing the equations of motion

Momentum Eq. �20�: We take s���ik /�s�→0, which
should be a reasonable approximation for solid 4He at low
temperatures, both because s→0 as T→0, and because K
and �V �and therefore �ik at constant wjl� should be nearly
independent of s. Substituting Eqs. �25� and �30� into Eq.
�20� and using Eqs. �32� and �34� then gives, for a purely
longitudinal mode,

0 = �	2 − 
c̃2 + wll
�0���

��
�k2	 js� + �	2 − c1

2k2�jn�, �35�

here we define, to simplify the equations,

c̃2 � c0
2 −

��

��
. �36�

Appendix B finds that ��� /����c0
2 so that c̃2�−�� /��. It

also finds that c̃2 is expected to be positive, and first order in
Pa /K. Further, it shows that for Pa
K we have c1

2� c̃2

�c0
2.
Superfluid Eq. �22�: A Maxwell relation that follows from

Eq. �3�, combined with Eq. �24�, gives

��

�wjl
=

�� jl

��
= � jl

��

��
. �37�

Then, neglecting s��� /�s�=s��T /����T4, and taking the
mode to be purely longitudinal, Eq. �22� gives

0 = �	2 − fsc0
2k2�js� + fs�	2 − k2c̃2�jn�. �38�

We use Eqs. �35� and �38� first to find the longitudinal-
mode frequencies, then to find the superfluid-to-normal ra-
tios of current density and velocity in each longitudinal
mode. For fs→0, Eq. �38� gives either 	2= fsc0

2k2 �fourth
sound� or js�=0 �no superflow�. In the latter case, substitution
into Eq. �35� then gives 	2=c1

2k2 �first sound�.

C. Longitudinal-mode frequencies

Equations �35� and �38� yield

0 = 	4�1 − fs� − 	2k2�c1
2 + fsc0

2 − fs
2c̃2 + wll
�0���

��
�	

+ k4fs�c1
2c0

2 − c̃2
c̃2 + wll
�0���

��
�	 . �39�

Solving Eq. �39� to first order in fs gives

	1
2

k2 �
	+

2

k2 = c1
2 + fs�c1

2 − 2c̃2 +
c̃4

c1
2 + wll

�0���

��

 c̃2

c1
2 − 1�	

�40�

and

	4
2

k2 �
	−

2

k2 = fs
c0
2 −

c̃4

c1
2 − wll

�0���

��

c̃2

c1
2� � fsc̃0

2. �41�

In the limit where c0
2
�� /�� and wll

�0�
1 �i.e., Pa
K�,

c̃0
2 � c0

2 −
c̃4

c1
2 . �42�

Appendix B finds that both terms on the right-hand side of
Eq. �42� are second order in Pa /K. Further, it shows that for
Pa
K we have c1

2� c̃2� c̃0
2.

D. Longitudinal-mode structure—currents and velocities

We now find the ratios of the normal fluid and superfluid
response for both longitudinal modes. These ratios will be
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used to calculate, for each mode, the response to the stress
and temperature produced by transducers and by heaters. We
employ

vs�

vn�
=

�

�s

�s�vs� − vn��
�vn�

+ 1 =
1

fs

js�

jn�
+ 1. �43�

The ratios js� / jn� for each mode can, in principle, be ob-
tained from the normal-mode frequencies and either of Eq.
�35� or Eq. �38�.

1. First sound mode structure

From Eq. �38�, with the subscript 1 denoting first sound,

js1�

jn1�
= − fs

	1
2

k2 − c̃2

	1
2

k2 − fsc0
2

. �44�

Substituting 	1
2 from Eq. �40�, accurate to zeroth order in fs,

gives a ratio accurate to first order in fs,

js1�

jn1�
� − fs
1 −

c̃2

c1
2� . �45�

Then, using Eq. �43�, the ratio of superfluid velocity to nor-
mal velocity for first sound is

vs1�

vn1�
�

c̃2

c1
2 . �46�

Appendix B shows that c1
2� c̃2 so vn1� �vs1� .

2. Fourth sound mode structure

From Eq. �35�, with subscript 4 denoting fourth sound,

js4�

jn4�
= −

	4
2

k2 − c1
2

	4
2

k2 − �c̃2 + wll
�0���

��
	 . �47�

With 	4
2� fs, for fs
1

js4�

js4�
� −

c1
2

c̃2 + wll
�0���

��

. �48�

Appendix B shows that if Pa /K
1, then wll
�0�
1 and c0

2


�� /��. Thus, Eq. �36� gives c̃2�−�� /���wll
�0��� /��.

Then,

js4�

jn4�
� −

c1
2

c̃2 . �49�

Then, using Eq. �43�, the ratio of superfluid velocity to nor-
mal velocity for fourth sound is, to lowest order in fs,

vs4�

vn4�
� −

c1
2

fsc̃
2 . �50�

Appendix B shows that c1
2� c̃2 so vs4� �vs4� .

V. LONGITUDINAL MODES—STRESS AND
TEMPERATURE RESPONSES

We now calculate the deviations from equilibrium of the
longitudinal stress and temperature produced by a transducer
and by a heater. We consider that only the �11� component of
the stress is generated. For notational simplicity, we employ
�̂���11� ; recall that � is reserved for the entropy/mass.

A. Stress

Conservation of momentum �Eq. �10�� yields

�̂� = −
	g�

k
= −

	

k
�js� + jn�� = −

	

k

 js�

jn�
+ 1��vn�. �51�

Substituting the ratio js� / jn� from Eqs. �45� and �49� and
	1,4=+c1,4k from Eqs. �40� and �41� into Eq. �51� gives the
stress associated with each mode. For fs
1,

�̂1� � − c1�1 − fs
1 −
c̃2

c1
2�	�vn1� � − �c1vn1� , �52�

�̂4� � fs
1/2c1

2

c̃2�c̃0vn4� = fs
1/2c1

2

c̃2�c̃0
vn4�

vn1�
vn1� . �53�

where we have used c1
2� c̃2 �see Appendix B�.

The total stress deviation therefore is

�̂� = �̂1� + �̂4� � − c1�vn1� �1 − fs
1/2c̃0

c1

c̃2

vn4�

vn1�
	 . �54�

The ratio vn4� /vn1� depends on the mode generator, to be dis-
cussed in the next section.

B. Temperature

The temperature deviation is less straightforward to ob-
tain because it is a function of the variables s, �, and wjl,

T� �
�T

�s
s� +

�T

��
�� +

�T

�wjl
wjl� . �55�

Since �T /�wjl=�� jl /�s, and K and �V depend only weakly
on s, by Eq. �23� we neglect �T /�wjl. Substitution for �� and
s� from Eqs. �16� and �17� then yields

T� � s
�T

�s

ki

	
vni
� +

�T

��

ki

	
gi�. �56�

We earlier showed that the mode is longitudinal so we drop
the indices i. The identity g�=��1+ js� / jn��vn� then yields, for
both modes, that

T� �
k

	
vn��s

�T

�s
+ �

�T

��

1 +

js�

jn�
�	 . �57�

Substituting the ratio js� / jn� from Eqs. �45� and �49� and
	1,4=+ck1,4 from Eqs. �40� and �41� into Eq. �57� gives the
temperature associated with each mode. To lowest order in
fs, we obtain

T1� �
vn1�

c1
�s

�T

�s
+ �

�T

��
	 , �58�
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T4� � fs
−1/2vn4�

c̃0
�s

�T

�s
+ �

�T

��

1 −

c1
2

c̃2�	 . �59�

For a solid at low temperature, Appendix C gives ���T /���
�10s��T /�s�. In addition, for Pa
K �as is the case here�,
Appendix B gives c1

2� c̃2. Therefore, Eqs. �58� and �59� be-
come

T1� � �
�T

��

vn1�

c1
, �60�

T4� � − fs
−1/2�

�T

��

c1
2

c̃2

vn4�

c̃0

= − fs
−1/2�

�T

��

c1
2

c̃2

vn4�

vn1�

vn1�

c̃0

. �61�

The total temperature deviation therefore is

T� = T1� + T4� � �
�T

��

vn1�

c1
�1 − fs

−1/2 c1
3

c̃2c̃0

vn4�

vn1�
	 . �62�

The ratio vn4� /vn1� depends on the mode generator, to be dis-
cussed in the next section.

VI. LONGITUDINAL-MODE GENERATION

A transducer produces, and therefore can be used to de-
tect, stress deviations. A heater produces, and therefore can
be used to detect, temperature deviations �when used as a
detector, a heater is called a thermometer�. To utilize the
results of Sec. V, we find vn4� /vn1� for each device, then sub-
stitute it into Eqs. �52�–�54� and �60�–�62� to find the respec-
tive stress and temperature deviations produced by transduc-
ers and heaters.

A. Transducer properties

For a transducer we take vs�=vn� �and therefore js�=0� so
that

0 = js��trn = �js1� + js4� �trn = � js1�

jn1�
jn1� +

jn4�

jn4�
jn4� 	

trn

, �63�

where the subscript “trn” denotes properties of a transducer.
Then


vn4�

vn1�



trn

=
 jn4�

jn1�



trn

= −
js1� /jn1�

js4� /jn4�
. �64�

Use of Eqs. �45� and �49� yields


vn4�

vn1�



trn

� − fs
c̃2

c1
2
1 −

c̃2

c1
2� � −

fsc̃
2

c1
2 , �65�

where we have taken c1
2� c̃2 �see Appendix B�.

Equation �52� gives �̂1� in terms of vn1� , regardless of gen-
erator. Use of Eq. �65� in Eqs. �53� and �54� gives

�̂4��trn � − fs
3/2�c̃0vn1� , �66�

�̂��trn � − �c1vn1� 
1 + fs
3/2 c̃0

c1
� � − �c1vn1� , �67�

for fs
1 and c̃0
2
c1

2. Thus the stress produced by a trans-
ducer primarily goes into first sound, with a fraction
fs

3/2�c̃0 /c1� of the stress going into fourth sound. Equations
�52� and �66� divided by Eq. �67� are the two entries in the
top left of Table I.

Equation �60� gives T1� in terms of vn1� , regardless of gen-
erator. Substituting Eq. �65� into Eq. �61� yields

T4��trn � fs
1/2�

�T

��

vn1�

c̃0

. �68�

By Eq. �60�, T4�= fs
1/2�c1 / c̃0�T1�, so T1� and T4� could be of the

same order of magnitude. Equations �60� and �68� divided by
Eq. �67� are the two entries in the top right of Table I.

B. Heater properties

For a heater we take g�=0 so that

0 = g��htr

= ��js1� + jn1� � + �js4� + jn4� ��htr

= 
 js1�

jn1�
+ 1� jn1� �htr + 
 js4�

jn4�
+ 1� jn4� �htr, �69�

TABLE I. The efficiency of first and fourth sound mode generation by transducers and heaters, with
entries given as a 4�2 matrix M. T� is the temperature deviation �produced/detected by a heater/
thermometer� and �̂�=�11� is the longitudinal stress deviation �produced and detected by a transducer�, where
subscripts 1 and 4 denote the first and fourth sound modes. Here, �T /�� �and �� /�T� is taken at constant s
and wjl.

Generator Mode Stress Temperature

Transducer First sound
�̂1�

�̂�
� 1

1+fs
3/2 c̃0

c1

�1
T1�

�̂�
�− 1

c1
2

�T
��

Fourth sound
�̂4�

�̂�
� 1

1+fs
−3/2c1

c̃0

� fs
3/2 c̃0

c1

1

T4�

�̂�
�−

fs
1/2

c1c̃0

�T
�� =

fs
1/2c1

c̃0

T1�

�̂�

Heater First sound
�̂1�

T�
� fs

1/2c1c̃0
��
�T

T1�

T�
� 1

1−fs
−1/2c1

c̃0

�−fs
1/2 c̃0

c1

1

Fourth sound
�̂4�

T�
� fsc̃0

2 ��
�T =−fs

1/2 c̃0

c1

�̂1�

T�



�̂1�

T�

T4�

T�
� 1

1−fs
1/2 c̃0

c1

�1
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where the subscript “htr” denotes properties of a heater. Then


vn4�

vn1�



htr

=
vn4�

jn1�



htr

= −
�js1� /jn1� � + 1

�js4� /jn4� � + 1
, �70�

and substitution from Eqs. �45� and �49� yields, for fs
1,


vn4�

vn1�



htr

�
1

c1
2

c̃2 − 1

�
c̃2

c1
2 . �71�

Here, we have used c1
2� c̃2 �see Appendix B�.

Equation �60� gives T1� in terms of vn1� , regardless of gen-
erator. Substitution of Eq. �71� into Eqs. �61� and �62� gives

T4��htr � − fs
−1/2�

�T

��

vn1�

c̃0

, �72�

T��htr � �
�T

��

vn1�

c1
�1 − fs

−1/2c1

c̃0
	 � − fs

−1/2�
�T

��

vn1�

c̃0

, �73�

for fs
1 and c̃0
2
c1

2. Thus the temperature produced by a
heater primarily goes into fourth sound, with a fraction
fs

1/2�c̃0 /c1� of the temperature going into first sound. Equa-
tions �60� and �72� divided by Eq. �73� are the two entries in
the bottom right of Table I.

Equation �52� gives �̂1� in terms of vn1� , regardless of gen-
erator. Substituting Eq. �71� into Eq. �53� yields

�̂4��htr � fs
1/2�c̃0vn1� . �74�

Since fs
1 and c̃0
2
c1

2, we have �̂1���̂4�. Equations �52� and
�74� divided by Eq. �73� are the two entries in the bottom left
of Table I.

C. Generation efficiencies

A proper treatment of the response of a given detector
�transducer or thermometer� to a given mode �first or fourth
sound� would consider the incoming mode and what happens
under reflection from the detector; this would give the net
stress and temperature at the detector.31 We consider only the
issue of generation.

A transducer generates mostly stress, �̂�. Thinking of the
equation entries in Table I as a 4�2 matrix M, M11 shows
that a transducer is efficient as a first sound generator.
M21 /M11 gives

�̂4�

�̂1�
� fs

3/2 c̃0

c1
. �transducer� �75�

For fs
1 and c̃0
2
c1

2, this is negligible.
Although a transducer primarily produces stress, it also

produces a small temperature deviation T�. M22 /M12 gives

T4�

T1�
� fs

1/2c1

c̃0

. �transducer� �76�

For fs
1 and c̃0
2
c1

2, it is not clear which of the terms in Eq.
�76� dominates.

A heater generates mostly temperature, T�, and M42
shows that a heater is efficient as a fourth sound generator.
M42 /M32 gives


T4�

T1�

 � fs

−1/2c1

c̃0

� 1, �heater� �77�

which is large. In fact, for fs
1 and c̃0
2
c1

2, M42=T4� /T�
�1 and therefore nearly all of the temperature response cor-
responds to the fourth sound mode.

Although a heater primarily produces temperature, it also
produces a small stress deviation �̂�. M41 /M31 gives


 �̂4�

�̂1�

 � fs

1/2 c̃0

c1
. �heater� �78�

Therefore, with fs
1 and c̃0
2
c1

2, Eqs. �75� and �78� imply
that stress deviations do not contribute an appreciable
amount of fourth sound, whether produced by a transducer or
a heater.

VII. SUMMARY

We have studied the implications of the Andreev and Lif-
shitz theory of supersolids for the generation of a fourth
sound mode in a solid under an applied pressure Pa, includ-
ing the relative efficiencies of a transducer and a heater in
producing both longitudinal elastic waves and fourth sound
waves. The present results apply when the bulk modulus K
� Pa.
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APPENDIX A: RELATING APPLIED PRESSURE Pa AND
INTERNAL PRESSURE P

We now use the experimental data of Ref. 35 to estimate
P / Pa. We then evaluate when Pa� P. Reference 30 gives
that

P

Pa
�

K�Pa

2K2 , �A1�

where K��K−V��K /�V� �wik,�,N. Under hydrostatic compres-
sion �ik

�0�− P�ik=−Pa�ik. Thus,

�ll
�0� = 3P − 3Pa �

3K�Pa
2

2K2 − 3Pa. �A2�

Unfortunately, K� is not a quantity measured experimen-
tally since the structure of the energy density dictates that the
derivative is taken at constant strain �i.e., constant lattice site
density�.

In what follows, we roughly estimate �K /�V by assuming
it to be of the same order of magnitude whether taken at
constant wik or under typical experimental conditions. That
is, we take


 �K

�V



wik,�,N
�
 �K

�V



�,N,exp
�
�K

�V



�,N,exp
. �A3�
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We now consider the data of Ref. 35. Although the
samples were necessarily under pressure, Ref. 35 appears to
apply c1

2= �1 /����� /�w�= �1 /���K+ �4 /3��V� without includ-
ing corrections due to Pa.30 Nevertheless their result should
permit a rough estimate �for simplicity we consider that T
�0�. We use K= �1 /3��c11+2c13�, where c11 and c13 are elas-
tic constants.35 Select parts of Tables I and II of Ref. 35 are
reproduced in Table II for two molar volumes, which is suf-
ficient to make estimates.

These data give �V�−1.2 cm3 /mole and �K
�160 bars so that �K /�V�−133 bars mole /cm3, which
we take to be constant since the elastic constants in Fig. 1 of
Ref. 35 are linear in volume. Thus we obtain the two values
for K� in Table II: K��10 K at Pa=31 bars and K�

�6.6 K at Pa=52 bars. For Pa�31 bars, P / Pa�0.53 �and
thus �11 / Pa�0.47�. For Pa�52 bars, P / Pa�0.37 �and thus
�11 / Pa�0.63�.

For V=20.5 cm3 /mole, Pa /K�0.10, so it is appropriate
to take Pa
K. For V=19.28 cm3 /mole, Pa /K�0.11, and
Pa
K is still a reasonable approximation. Therefore, for ap-
plied pressures less than 100 bars �and possibly higher�, Pa

K likely holds.

Pa /K increases as Pa increases. Therefore, although at
higher Pa we may find that Pa� P �extrapolating from Table
II�, Pa /K might become on the order of unity, and the ap-
proximations made in the present work and in Ref. 30 no
longer apply.

APPENDIX B: VELOCITIES, THERMODYNAMIC
DERIVATIVES, AND STRAIN IN A CRYSTAL UNDER

APPLIED PRESSURE

We now estimate the relative sizes of the velocities c1, c0,
c̃, and c̃0 in the limit Pa
K. We use the relationships be-
tween thermodynamic derivatives and applied pressure given
in Ref. 30. To lowest order in Pa /K, Ref. 30 gives

wll
�0� = −

Pa

K
, �B1�

��

��
=

VPa

�K

 �K

�V



�,wik,N
, �B2�

�P

��
=

V2Pa
2

2�K2
 �2K

�V2

�,wik,N

, �B3�

�P

�w
= − Pa
1 −

V

K
 �K

�V

�,wik,N

� , �B4�

c1
2 �

K +
4

3
�V

�
, �B5�

where �=s /�. Here the internal pressure P has been taken to
depend only on the square of the strain. Although �� /�� and
�P /�� in Ref. 30 are taken at constant �, not s, at solid 4He
temperatures we assume that ��0�s. Note that to lowest
order in Pa /K, the strain of Eq. �B1� agrees with Ref. 34,
which includes lattice stress but no internal pressure P. �Ref-
erence 30 also finds a Pa

2 term in the strain that is not ob-
tained in Ref. 34.�

We now use the Gibbs-Duhem relation �5� to determine
c0

2,

c0
2 = �

��

��
�

�P

��
− wll

�0���

��

�
VPa

2

�K2�V

2
 �2K

�V2

�,wik,N

+
 �K

�V

�,wik,N

	 . �B6�

Note that Ref. 1 takes ���� /���=�P /��, and thus does not
include the term proportional to the static strain. As for P, �
depends only on the square of the strain, via a Maxwell re-
lation. This is not true for a good liquid.

Equation �B6� shows that c0
2 is second order in Pa /K

whereas Eq. �B2� shows that �� /�� is first order in Pa /K.
Thus, for Pa
K, ��� /���� �c0

2�. Therefore, Eq. �36� gives

c̃2 � − ��/�� � c0
2. �B7�

Further, we may find the sign of c̃2. K is a measure of the
stiffness of a solid. Thus, as V increases at constant particle
number and strain �or lattice site number density�, i.e., as
vacancies and lattice sites are added to the system, K should
decrease, or �K /�V�0. Then Eq. �B2� gives �� /���0 so
that

c̃2 � − ��/�� � 0. �B8�

Moreover, since to first order c1
2 is independent of Pa, Eqs.

�B2� and �B5� give

c1
2 � ���/��� . �B9�

Combining Eqs. �B7� and �B9� yields

c1
2 � c̃2 � c0

2. �B10�

Finally, Eq. �42� gives c̃0
2�c0

2− �c̃4 /c1
2�, which implies that

c̃0
2
 c̃2. Thus, Eq. �B10� gives

TABLE II. The first four columns are experimental data on hcp 4He from Ref. 35. We also employ K= �c33+2c13� /3, assume K to be
linear in V, take K��K−V��K /�V�, and find P / Pa from Eq. �A1�.

Volume
�cm3 /mole�

Pa

�bars�a
c33

�bars�
c13

�bars�
K

�bars�
�K /�V

�bars mole /cm3�
K�

�bars�
P

�bars� P / Pa Pa /K

19.28 51.6 980 198 460 −133 3020 19.1 0.37 0.11

20.5 31.4 630 142 300 −133 3030 16.6 0.53 0.10

aValue was estimated by extrapolation from Table I of Ref. 35.
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c1
2 � c̃2 � c̃0

2. �B11�

The quantities c0
2 and c̃0

2 may be of the same order.

APPENDIX C: ON s(�T Õ�s) AND �(�T Õ��)

For an insulating solid at low temperatures, it is well
known that s=��T / ū�3, where � is a dimensionless constant
and ū is the mean velocity of longitudinal and transverse
ordinary sound.36 It immediately follows that

s
 �T

�s



�

=
T

3
�C1�

and that ��T /�ū�s=T / ū. We then have

�
 �T

��



s

= �
 �T

� ū



s

 � ū

��



s

� T
�

ū

 � ū

��



s

. �C2�

We are at low enough temperatures that we may consider ū
to depend only on density so that both s and T may be con-
sidered nearly zero.

We now estimate �� / ū���ū /��� �T=−�V / ū���ū /�V�T of Eq.
�C2�, where the molar volume V��−1. Using data from Fig.
13 of Ref. 37 we take an averaged longitudinal sound veloc-
ity of 5�104 cm /s to be ū, V to be 20 cm3 /mole, and �from
Fig. 13� �ū /�V���ū /�V� to be −0.83�104 mole / �cm2 s�.
This gives �� / ū���ū /��� �T�3.3. Comparison with Eq. �C1�
yields ���T /����10s��T /�s�.
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